Abstract

IL-17A (IL-17) is the signature cytokine produced by Th17 cells and has been implicated in host defense against infection and the pathophysiology of autoimmunity and cardiovascular disease. Little is known, however, about the influence of IL-17 on endothelial activation and leukocyte influx to sites of inflammation. We hypothesized that IL-17 would induce a distinct pattern of endothelial activation and leukocyte recruitment when compared with the Th1 cytokine IFN-γ. We found that IL-17 alone had minimal activating effects on cultured endothelium, whereas the combination of TNF-α and IL-17 produced a synergistic increase in the expression of both P-selectin and E-selectin. Using intravital microscopy of the mouse cremaster muscle, we found that TNF-α and IL-17 also led to a synergistic increase in E-selectin-dependent leukocyte rolling on microvascular endothelium in vivo. In addition, TNF-α and IL-17 enhanced endothelial expression of the neutrophilic chemokines CXCL1, CXCL2, and CXCL5 and led to a functional increase in leukocyte transmigration in vivo and CXCR2-dependent neutrophil but not T cell transmigration in a parallel-plate flow chamber system. By contrast, endothelial activation with TNF-α and IFN-γ preferentially induced the expression of the integrin ligands ICAM-1 and VCAM-1, as well as the T cell chemokines CXCL9, CXCL10, and CCL5. These effects were further associated with a functional increase in T cell but not neutrophil transmigration under laminar shear flow. Overall, these data show that IL-17 and TNF-α act in a synergistic manner to induce a distinct pattern of endothelial activation that sustains and enhances neutrophil influx to sites of inflammation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.