Abstract

OBJECTIVE:In this study, we aimed to assess the effects of long- and short-term IL-15 cytokine exposure of human monocyte-derived curdlan-matured dendritic cells (DCs) on the production of Th17 cell-polarizing cytokine IL-23 and subsequent Th17 cell activation.METHODS:Peripheral blood mononuclear cells (PBMCs) were purified using Ficoll-Paque from healthy donors. Monocytes were magnetically selected using CD14 Miltenyi beads and differentiated into DCs with granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-4 for five days in the presence or absence of IL-15 (100ng/ml) for long-term exposure experiments. Then, DCs were matured with peptidoglycan (PGN), or curdlan for 24 hours. For short-term exposure experiments, IL-15 was added only during maturation of DCs. Then, DCs were characterized concerning the expression of MHC II and costimulatory molecules, production of cytokine subunits IL-23p19, IL-12p40, IL-12p35 and cytokine IL-23 via flow cytometry or real-time qPCR or ELISA. Finally, the phosphorylation of signaling molecules after curdlan stimulation was assessed using phospho-flow assays.RESULTS:IL-15 exposure suppressed IL-23 production by DCs. As a result, IL-15-exposed DCs suppressed IL-17 production by allogeneic T cells. Importantly, we observed a reduction in the surface Dectin-1 receptor levels by IL-15-exposed DCs. In line with these observations, curdlan stimulation resulted in reduced phosphorylation of ERK1/2, NF-kB p65 and AKT by human DCs exposed to IL-15 compared with controls. These results may explain why IL-15-exposed DCs produce less IL-23 after maturation with curdlan, which is a ligand of Dectin-1.CONCLUSION:Short- or long-term exposure to IL-15 of human DCs during their differentiation or maturation programs DCs against Th17 cell polarization, which suggests that IL-15 availability may affect CD4+ T cell-mediated protective immunity to fungal infections.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.