Abstract

Chronic lymphocytic leukemias (CLLs) with unmutated (U-CLL) or mutated (M-CLL) IGHV have variable features of immunosuppression, possibly influenced by those CLL cells activated to produce interleukin 10 (IL-10). The two subsets differ in their levels of anergy, defined by low surface immunoglobulin M levels/signaling capacity, and in their DNA methylation profile, particularly variable in M-CLL. We have now found that levels of IL-10 produced by activated CLL cells were highly variable. Levels were higher in M-CLL than in U-CLL and correlated with anergy. DNA methylation analysis of IL10 locus revealed two previously uncharacterized 'variably methylated regions' (CLL-VMRs1/2) in the gene body, but similarly low methylation in the promoter of both U-CLL and M-CLL. CLL-VMR1/2 methylation was lower in M-CLL than in U-CLL and inversely correlated with IL-10 induction. A functional signal transducer and activator of transcription 3 (STAT3) binding site in CLL-VMR2 was confirmed by proximity ligation and luciferase assays, whereas inhibition of SYK-mediated STAT3 activation resulted in suppression of IL10. The data suggest epigenetic control of IL-10 production. Higher tumor load may compensate the reduced IL-10 production in U-CLL, accounting for clinical immunosuppression in both subsets. The observation that SYK inhibition also suppresses IL-10 provides a potential new rationale for therapeutic targeting and immunological rescue by SYK inhibitors in CLL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.