Abstract

FcepsilonRI expression and function is a central aspect of allergic disease. Using bone marrow-derived mouse mast cell populations, we have previously shown that the Th2 cytokine IL-4 inhibits FcepsilonRI expression and function. In the current study we show that the Th2 cytokine IL-10 has similar regulatory properties, and that it augments the inhibitory effects of IL-4. FcepsilonRI down-regulation was functionally significant, as it diminished inflammatory cytokine production and IgE-mediated FcepsilonRI up-regulation. IL-10 and IL-4 reduced FcepsilonRI beta protein expression without altering the alpha or gamma subunits. The ability of IL-4 and IL-10 to alter FcepsilonRI expression by targeting the beta-chain, a critical receptor subunit known to modulate receptor expression and signaling, suggests the presence of a Th2 cytokine-mediated homeostatic network that could serve to both initiate and limit mast cell effector function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.