Abstract

Vaccination induces immunostimulatory signals that are often accompanied by regulatory mechanisms such as IL-10, which control T-cell activation and inhibit vaccine-dependent antitumor therapeutic effect. Here we characterized IL-10-producing cells in different tumor models treated with therapeutic vaccines. Although several cell subsets produced IL-10 irrespective of treatment, an early vaccine-dependent induction of IL-10 was detected in dendritic cells (DC). IL-10 production defined a DC population characterized by a poorly mature phenotype, lower expression of T-cell stimulating molecules and upregulation of PD-L1. These IL-10+ DC showed impaired in vitro T-cell stimulatory capacity, which was rescued by incubation with IL-10R and PD-L1-inhibiting antibodies. In vivo IL-10 blockade during vaccination decreased the proportion of IL-10+ DC and improved their maturation, without modifying PD-L1 expression. Similarly, PD-L1 blockade did not affect IL- 10 expression. Interestingly, vaccination combined with simultaneous blockade of IL-10 and PD-L1 induced stronger immune responses, resulting in a higher therapeutic efficacy in tumor-bearing mice. These results show that vaccine-induced immunoregulatory IL- 10+ DC impair priming of antitumor immunity, suggesting that therapeutic vaccination protocols may benefit from combined targeting of inhibitory molecules expressed by this DC subset.

Highlights

  • The tumor microenvironment is characterized by the presence of immunosuppressive molecules which induce inhibitory effects on antitumor immunity [1]

  • Mice were vaccinated with OVA+Imiquimod and compared to controls groups of untreated mice (UT) or mice vaccinated with OVA+poly(I:C), a vaccine in which IL-10 blockade did not provide any antitumor benefit [23]

  • We have analyzed the role of IL-10, a cytokine with controversial effects on tumor immunity [16], reported as detrimental for T-cell priming during therapeutic vaccination [23, 25]

Read more

Summary

Introduction

The tumor microenvironment is characterized by the presence of immunosuppressive molecules which induce inhibitory effects on antitumor immunity [1] This microenvironment precludes correct activation of antigen-presenting cells (APC) responsible for priming T-cell responses [2] and the effector phase of tumorspecific lymphocytes [3, 4]. Characterization of these immunosuppressive molecules has allowed the design of new therapies aimed at blocking their inhibitory functions, leading to activation of antitumor immunity and efficient clinical effects [5, 6]. Besides inhibitory effects on APC with the concomitant down-regulation of T-cell activation, www.impactjournals.com/oncotarget

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.