Abstract

Both experimental and clinical studies have proved that radiotherapy can lead to not only local control of irradiated tumors, but also tumor regression of non-irradiated area, termed as abscopal effect. Abscopal effect has been attributed to radiotherapy-induced innate and adaptive anti-tumor immune responses. However, the detailed molecular mechanisms and key cellular components are still unclear. So, the purpose of this study is to reveal the key molecular mechanisms and essential cells in inducing abscopal effect. Bilateral MC38 subcutaneous tumor mouse models were established, and primary tumors were subjected to one fraction of 15Gy. CD45+ cells were sorted from both primary and abscopal tumors 3-, 7-, 17- and 24-day post radiotherapy respectively and subjected to single-cell RNA sequencing followed by standard bioinformatic analysis with R studio. To verify the findings, flow cytometry, mIHC and real-time qPCR were carried out to analyze the cellular and molecular components in tumor microenvironments. Cellular depletion experiments and conditional knockout mice were finally employed to confirm key mechanisms that contribute to abscopal effect. The primary and abscopal immune microenvironments showed different repertoires time-dependently. Radiotherapy induced durable type I interferon (IFN-I) responses with dramatic infiltration and activation of CD8+ T cells and tumor associated macrophages (TAMs) in primary tumors. However, in abscopal tumors, we found that TAMs rather than CD8+ T cells were the predominant population activated in early stages (3- and 7-day post radiotherapy), and functional CD8+ T cells enriched until late stages (24-day post radiotherapy). Thorough analysis of scRNA-seq and experimental validation discovered a unique subset of TAMs characterized by high expression of IL-1β emerged as early as 3-day post radiotherapy in both primary and secondary tumor immune microenvironments, termed as IL-1β+ TAMs herein. IL-1β+ TAMs were the main activated component in abscopal tumors in early stage, and strongest respondent to IFN-I pathway. Abscopal effect was significantly attenuated when IFN-I response was abolished in either primary or abscopal tumors or TAMs were depleted from abscopal tumors. Our data identified a subset of immune cells, IL-1β+ TAMs, and IFN-I as the essential cellular and molecular components that contribute to abscopal effect. Mechanically, radiotherapy-induced dramatical IFN-I response in primary tumors lead to enrichment of IL-1β+ TAMs, which initiated the anti-tumor immune response in abscopal tumors. All these findings provided theoretical basis for understanding and improving radiotherapy-induced abscopal effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call