Abstract

Dendritic epidermal T cells (DETCs) are the main source of insulin-like growth factor-1 (IGF-1) in epidermal tissue, which promote re-epithelialization and wound healing. In refractory wounds, IL-1β has been shown to activate NF-κB and suppress IGF-1 expression in DETCs. Nevertheless, the underlying mechanisms remain unclear. In this study, chromatin immunoprecipitation analysis revealed that IL-1β did not inhibit NF-κB binding to IGF-1 promoter, indicating that IL-1β/NF-κB may suppress IGF-1 expression by alternative mechanisms. MiRNAs negatively regulate gene expression predominantly by base pairing to the 3' untranslation region (UTR) of target mRNAs. Let-7f-5p, miR-1a-3p, and miR-98-5p have been identified as IGF-1-specific miRNAs that can bind directly to the 3'UTR of IGF-1 mRNA and dysregulate IGF-1 mRNA and protein levels. In IL-1β-treated epidermis around wounds or DETCs in vitro, NF-κB promoted the expression of let-7f-5p, and IGF-1 expression was impeded via NF-κB/let-7f-5p pathway. As pre-let-7f-5p, let-7f-1 is located in the 3'UTR of LOC118568094, and let-7f-2 is located in the intron of HUWE1. We discovered that NF-κB p65 bound to the promoters of LOC118568094 and HUWE1 to accelerate let-7f-5p expression, but NF-κB p65 did not affect the methylation levels of LOC118568094 and HUWE1 CpG islands. Injections of Let-7f-5p antagomir into IL-1β-treated and ischemic wound margins restored IGF-1 secretion in DETCs and promoted wound healing. In conclusion, we demonstrated that NF-κB signaling pathway activated by IL-1β could increase let-7f-5p expression to inhibit IGF-1 production in DETCs and delay wound healing. And let-7f-5p antagomir utilized in wound margin could effectively promote refractory wound healing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.