Abstract

Chronic inflammation is a common feature of obesity with elevated cytokines such as Interleukin-1 (IL-1) in circulation and tissues. Here, we report an unconventional IL-1R-MyD88-IRAK2-PHB/OPA1 signaling axis that reprograms mitochondrial metabolism in adipocytes to exacerbate obesity. IL-1 induced recruitment of IRAK2-Myddosome to mitochondria outer membrane via recognition by TOM20, followed by TIMM50-guided translocation of IRAK2 into mitochondria inner membrane to suppress oxidative phosphorylation and fatty acid oxidation, thereby, attenuating energy expenditure. Adipocyte-specific MyD88 or IRAK2 deficiency reduced high fat diet (HFD)-induced weight gain, increased energy expenditure and ameliorated insulin resistance, associated with a smaller adipocyte size and increased cristae formation. IRAK2 kinase inactivation also reduced HFD-induced metabolic diseases. Mechanistically, IRAK2 suppressed respiratory super-complex formation via interaction with PHB1 and OPA1 upon stimulation of IL-1. Taken together, our results suggest that IRAK2 Myddosome functions as a critical link between inflammation and metabolism, representing a novel therapeutic target for patients with obesity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.