Abstract
We investigated the response of purified and cloned human thymic epithelial cells (TEC) to IL-1, IL-4, and IFN-gamma stimulation in vitro. IL-1 alpha strongly up-regulated the production of granulocyte-macrophage CSF (GM-CSF), granulocyte CSF (G-CSF), IL-6, and IL-8, as measured by specific immunoenzymetric assays and by increased steady state mRNA levels. IL-4 or IFN-gamma did not induce these cytokines in TEC but in a sustained and dose-dependent manner down-regulated the IL-1-induced GM-CSF protein and mRNA levels. Only IFN-gamma, and not IL-4, suppressed the IL-1-induced G-CSF and IL-8 production, as shown at both the protein and mRNA levels. The inhibition was dose dependent, sustained for at least 96 h, and more pronounced for G-CSF than for IL-8. In contrast, both IL-4 and IFN-gamma enhanced the IL-1-induced IL-6 production. IL-4 and IFN-gamma had additive effects to increase IL-6 secretion and to more completely suppress the IL-1-induced GM-CSF. Analyses of cell surface molecules showed that intercellular adhesion molecule 1 (ICAM-1) expression on TEC was increased by IL-1 or IFN-gamma. IL-4 slightly down-regulated constitutive ICAM-1 levels but did not significantly modify the levels of expression induced by either IL-1 or IFN-gamma. MHC class II expression was induced by IFN-gamma but not by IL-1 or IL-4. The combination of IL-1 and IL-4 with IFN-gamma did not alter the levels of class II MHC Ag induced by IFN-gamma. In conclusion, TEC cytokine production and cell surface molecule expression are differentially regulated via a complex cytokine network. Our data suggest that developing T cells provide, in part, the signals controlling the function of their supporting stroma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.