Abstract

Preoperative or perioperative ischemic injury of allografts predisposes to graft arteriosclerosis, the major cause of late graft failure. We hypothesize that injured tissues release mediators that increase the production of pathogenic cytokines by alloreactive T cells. We find that freeze-thaw lysates of human endothelial cells (EC) increase both IFN-gamma and IL-17 production by human CD4(+) T cells activated by HLA-DR(+) allogeneic EC. Immunoadsorption of high-mobility group box 1 protein (HMGB1) reduces this activity in the lysates by about one-third, and recombinant HMGB1 increases T cell cytokine production. HMGB1 acts by inducing IL-1beta secretion from contaminating monocytes via TLR4 and CD14. Upon removal of contaminating monocytes, the remaining stimulatory activity of EC lysates is largely attributable to IL-1alpha. Recombinant IL-1 directly augments IFN-gamma and IL-17 production by activated memory CD4(+) T cells, which express IL-1R1. Furthermore, IL-1 increases the frequency of alloreactive memory CD4(+) T cells that produce IL-17, but not those that produce IFN-gamma, in secondary cultures. Our results suggest that IL-1, released by injured EC or by HMGB1-stimulated monocytes, is a key link between injury and enhanced alloimmunity, offering a new therapeutic target for preventing late graft failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.