Abstract
The IκB kinase (IKK)/NF-κB pathway has been shown to be a major regulator in cell survival. However, the mechanisms through which IKK mediates cell death are not clear. In this study, we showed that IKK-β contributed to hydrogen peroxide (H(2)O(2))-induced cell death independent of the NF-κB pathway. Our results demonstrated that the pro-death function of IKK-β under oxidative stress was mediated by p85 S6K1 (S6 kinase 1), but not p70 S6K1 through a rapamycin-insensitive and mammalian target of rapamycin complex 1 kinase-independent mechanism. We found that IKK-β associated with p85, but not p70 S6K1, which was required for H(2)O(2)-induced activation of p85 S6K1. IKK-β and p85 S6K1 contributed to H(2)O(2)-induced phosphorylation of Mdm2 (S166) and p53 accumulation. p85 S6K1 is critical for IKK-β-mediated cell death. Thus, these findings established a novel oxidative stress-responsive pathway that involves IKK-β, p85 S6K1 and Mdm2, which is response for H(2)O(2)-induced cell death. Our results have important implications for IKK-β and p85 S6K1 as potential targets for the prevention of diseases involved in oxidative stress-induced aberrant cell death.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.