Abstract

The monoclinic mineral ikaite (CaCO3 · 6H2O) and its pseudomorphs are potentially important archives for palaeoenvironmental reconstructions. Natural ikaite occurs in a small temperature range near freezing point and is reported mainly from marine and only rarely from continental aquatic environments. Ikaite transforms to more stable anhydrous forms of CaCO3 after an increase in temperature or when exposed to atmospheric conditions. The knowledge about conditions for natural ikaite formation, its stable isotope fractionation factors and isotopic changes during transformation to calcite is very restricted. Here, for the first time, primary precipitation of idiomorphic ikaite and its calcite pseudomorphs are reported from a subsaline lake, Laguna Potrok Aike, in southern Argentina. The calculated stable oxygen isotope fractionation factor between lake water and ikaite-derived calcite (αPAI = 1.0324 at a temperature of 4.1 °C) is close to but differs from that of primarily inorganically precipitated calcite. Pseudomorphs after ikaite rapidly disintegrate into calcite powder that is indistinguishable from μm-sized calcite crystals in the sediment record of Laguna Potrok Aike suggesting an ikaite origin of sedimentary calcites. Therefore, the Holocene carbonates of Laguna Potrok Aike have the potential to serve as a recorder of past hydrological variation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call