Abstract

Accurate classification of brain tumors is vital for detecting brain cancer in the Medical Internet of Things. Detecting brain cancer at its early stages is a tremendous medical problem, and many researchers have proposed various diagnostic systems; however, these systems still do not effectively detect brain cancer. To address this issue, we proposed an automatic diagnosing framework that will assist medical experts in diagnosing brain cancer and ensuring proper treatment. In developing the proposed integrated framework, we first integrated a Convolutional Neural Networks model to extract deep features from Magnetic resonance imaging. The extracted features are forwarded to a Long Short Term Memory model, which performs the final classification. Augmentation techniques were applied to increase the data size, thereby boosting the performance of our model. We used the hold-out Cross-validation technique for training and validating our method. In addition, we used various metrics to evaluate the proposed model. The results obtained from the experiments show that our model achieved higher performance than previous models. The proposed model is strongly recommended to be used to diagnose brain cancer in Medical Internet of Things healthcare systems due to its higher predictive outcomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.