Abstract

The structural, mechanical, elastic anisotropy, and electronic properties, together with the stability, effective mass of holes and electrons for XN (X=Al, Ga, In) in the Pnma phase are investigated by using density functional theory calculations. The elastic constants and the phonon spectra all manifest III-nitride polymorphs: XN (X=Al, Ga, In) in the Pnma phase in this work are mechanically and dynamically stable at ambient pressure. Al atoms, Ga atoms, and In atoms lead to new electrical and band-gap properties: XN (X=Al, Ga, In) in the Pnma phase are all semiconductor materials with direct band gaps of 4.76 eV, 2.80 eV, and 0.66 eV, respectively, which present great application potentials in the new generation electronic devices such as ultraviolet detectors, visible light detectors, infrared detectors, violet-light diodes, and light-emitting diodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.