Abstract

Semiconductors composed of one group III and one group V element are widely used in light-emitting diodes, thermal imaging systems, and other commercial devices. These binary materials, which include gallium and indium antimonide, may soon find their way into even more electronic applications thanks to a study showing that the normally nonporous materials can be prepared as inherently tunable clathrates—crystals with cage-like cavities that trap molecules or ions (J. Am. Chem. Soc. 2020, DOI: 10.1021/jacs.9b12351). By using high-temperature methods to react stoichiometric quantities of group III and group V elements (or binary precursors) with either rubidium or cesium, Bryan Owens-Baird, Jian Wang, and Kirill Kovnir of Iowa State University and coworkers synthesized three unconventional III-V clathrates: Cs8In27Sb19, Cs8Ga27Sb19, and Rb8Ga27Sb19. Analyses show that the new compounds retain the high charge-carrier mobility and other critical semiconductor properties of the conventional versions. For example, the values of those parameters in Cs8In27Sb19 are

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.