Abstract

We have developed III–V compound semiconductor multi-junction solar cells by a room-temperature wafer-bonding technique to avoid the formation of dislocations and voids due to lattice mismatch and thermal damage during a conventional high-temperature wafer-bonding process. First, we separately grew an (Al)GaAs top cell on a GaAs substrate and an InGaAs bottom cell on an InP substrate by metal solid source molecular beam epitaxy. Thereafter, we successfully bonded these sub-cells by the room-temperature wafer-bonding technique and fabricated (Al)GaAs ∥ InGaAs wafer-bonded solar cells. To the best of our knowledge, the obtained GaAs ∥ InGaAs and AlGaAs ∥ InGaAs wafer-bonded solar cells exhibited the lowest electrical and optical losses ever reported. The AlGaAs ∥ InGaAs solar cells reached the maximum efficiency of 27.7% at 120 suns. These results suggest that the room-temperature wafer-bonding technique has high potential for achieving higher conversion efficiencies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call