Abstract

Two transients, an open grid and a scram at 50% load, were conducted on unit 4 of the PWR power plant Bugey. The thermal hydraulic response of the steam generator was recorded. For the open grid test, the following observations are noted: No alarming phenomena are observed in the steam generator during the transient. Primary pressure oscillations were very mild, and did not exceed about 4.8 bar/min with a maximum amplitude of ±8 bar. This condition should not result in significant stress levels. Steam generator outer shell metal temperature gradients remained within very acceptable limits; a maximum amplitude of about +13°C and a rate not exceeding 0.8°C/min are obtained. This slow rate is explained by a fall in primary water temperature that allows for a temperature decrease inside the U-tube bundle. Similarly, the temperature rise on the tube sheet does not exceed an amplitude of 20°C with a rate of about 2°C/min. Again these conditions do not lead to any significant thermal shock on the tube sheet. The steam generator feed controls maintain the level within the normal operation range and the small addition of colder feedwater does not lead to great temperature changes because of the large mass of the recirculation water in the steam generator. For the scram at 50% load, the following observations are noted: no severe thermal or pressure transients are observed in this test. Fluid temperature fluctuations occur with rates not exceeding 1°C/s and a maximum amplitude of about 20°C in the downcomer and 10°C on the tube sheet. Steam generator outer shell temperature varies at a rate of about ±0.8°C/min with a maximum amplitude of about 16°C. These thermal transients should lead to thermally induced stresses of acceptable levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.