Abstract

We have shown recently that the notion of poking pairwise interactions along a chain provides a unifying framework for understanding the formation of both secondary and the tertiary protein structure based on symmetry and geometry. α-helices and β-sheets are found to be special geometries that have systematic poking contacts in a repetitive manner with the contacts being local along the α-helix and non-local along a pair of adjacent strands within a β-sheet. Pairwise poking interactions also govern tertiary structure formation, but they are weaker and there are no special geometrical constraints as in secondary structure formation. Here we demonstrate that protein turns, the most prevalent non-repetitive structural element in proteins, are instances of local (as in α-helices) and isolated (non-repetitive) poking pairwise contacts for which the geometrical constraints are partially relaxed. This simple and purely geometrical definition of protein turns (also sometimes known as reverse turns, β-turns, β-bends, hairpin bends, 310 bends, kinks, widgets, etc.) provides a simple framework for unifying them. We present the results of a systematic analysis and identify their structural classes as well as their respective amino acid preferences.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call