Abstract

The phenylacetic acid (PA) transport system of Penicillium chrysogenum is induced by PA, 2-hydroxyphenylacetic and 4-phenylbutyric acids but not by benzoic, phenoxyacetic acid and phenylpropionic acids. Substitution in the aromatic moiety (3-hydroxyphenylacetic, 4-hydroxyphenylacetic acids), replacement of the aromatic moiety by other rings (thiophene-2-acetic acid, indole-3-acetic or indole-3-butyric acids) or the presence of an amino group in the alpha-position (2-aminophenylacetic acid) eliminates inducing activity. 2-Phenylbutyric acid dose not induce the PA transport system indicating that fatty acid-beta-oxidation is needed to generate the authentic regulatory molecule (phenylacetyl-CoA) from 4-phenylbutyric acid. Furthermore, the uptake system synthesized in presence of PA, 2-hydroxyphenylacetic or 4-phenylbutyric acids is under carbon catabolic repression control and is also repressed by L-lysine suggesting that the three molecules induce in P. chrysogenum a single mechanism of transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.