Abstract

Vertical Federated Learning (VFL) has many applications in the field of smart healthcare with excellent performance. However, current VFL systems usually primarily focus on the privacy protection during model training, while the preparation of training data receives little attention. In real-world applications, like smart healthcare, the process of the training data preparation may involve some participant’s intention which could be privacy information for this participant. To protect the privacy of the model training intention, we describe the idea of Intention-Hiding Vertical Federated Learning (IHVFL) and illustrate a framework to achieve this privacy-preserving goal. First, we construct two secure screening protocols to enhance the privacy protection in feature engineering. Second, we implement the work of sample alignment bases on a novel private set intersection protocol. Finally, we use the logistic regression algorithm to demonstrate the process of IHVFL. Experiments show that our model can perform better efficiency (less than 5min) and accuracy (97%) on Breast Cancer medical dataset while maintaining the intention-hiding goal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.