Abstract

Iterative and time-step methods are spread far and wide in several mathematics and physics domains. At the same time, modern computers include multicore CPUs along with GPUs, so it is important to use all their computing capabilities for their efficient use. Aiming to improve performance of this kind of numerical methods, we introduce in this work a new heterogeneous parallelism CPU + GPU scheme which we call IHP. This new scheme has the advantage of being self-balanced and able to dynamically distribute the workload between CPU and GPU according to their performance on the fly. Also, it can be used with several contending technologies, like CUDA and OpenCL for GPUs or OpenMP and Intel TBB for CPUs. As a case in point, we analyse an image denoising problem based on time-step diffusion methods for brightness and chromaticity. Results show execution significant improvements in execution time using this scheme, with a minimal overhead.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.