Abstract

Let [Formula: see text] denote a connected [Formula: see text]-regular undirected graph of finite order [Formula: see text]. The graph [Formula: see text] is called Ramanujan whenever [Formula: see text] for all nontrivial eigenvalues [Formula: see text] of [Formula: see text]. We consider the variant [Formula: see text] of the Ihara Zeta function [Formula: see text] of [Formula: see text] defined by [Formula: see text] The function [Formula: see text] satisfies the functional equation [Formula: see text]. Let [Formula: see text] denote the number sequence given by [Formula: see text] In this paper, we establish the equivalence of the following statements: (i) [Formula: see text] is Ramanujan; (ii) [Formula: see text] for all [Formula: see text]; (iii) [Formula: see text] for infinitely many even [Formula: see text]. Furthermore, we derive the Hasse–Weil bound for the Ramanujan graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.