Abstract

AbstractA key ingredient in the Taylor–Wiles proof of Fermat’s last theorem is the classical Ihara lemma, which is used to raise the modularity property between some congruent Galois representations. In their work on Sato and Tate, Clozel, Harris and Taylor proposed a generalisation of the Ihara lemma in higher dimension for some similitude groups. The main aim of this paper is to prove some new instances of this generalised Ihara lemma by considering some particular non-pseudo-Eisenstein maximal ideals of unramified Hecke algebras. As a consequence, we prove a level-raising statement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.