Abstract

Nanofiber neuromorphic transistors are regarded as promising candidates for mimicking brain-like learning and advancing high-performance computing. Composite nanofibers (CNFs) typically exhibit enhanced optoelectronic and mechanical properties. In this study, indium-gallium-zinc oxide (IGZO)/polyvinylpyrrolidone (PVP) CNFs were synthesized, and the neuromorphic transistor was integrated on both rigid and flexible substrates. The learning behavior, characterized by the transition from short-term plasticity (STP) to long-term plasticity, was achieved through photoelectric stimulation of the rigid neuromorphic transistor. The nonlinear STP was simulated by the flexible neuromorphic transistor through electrical pulses, matching effectively with a reservoir computing (RC) system. Hand gesture recognition with little energy consumption (49 pJ per reservoir state) and a maximum accuracy of 92.86% has been achieved by the RC system, proving the substantial potential of the IGZO/PVP CNF neuromorphic transistor for wearable intelligent processing tasks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.