Abstract

Ignitions of solid materials from very high heat fluxes (>200 kW/m2) are differentiated from more common lower flux ignition because the required total energy input can be lower, and the process is much faster. Prior work has characterized ignition thresholds via thermal properties of the solids, flux, and fluence. The historical data, however, neglect to provide similar focus on the initiation of pyrolysis. The initiation of pyrolysis is of key relevancy because it represents an absolute threshold below which ignition is of zero probability. It is also a metric of potentially higher reliability for assessing material response because surface material properties such as absorptivity, conductivity, and density tend to change upon initial pyrolysis due to charring or other transformations. Recent data from concentrated solar flux for a variety of materials and exposures are analyzed here to explore the nature of trends and thresholds for onset of pyrolysis at high heat flux. This work evaluates initiation threshold data and provides a theoretical technique for further model development. The technique appears to be functionally appropriate to evaluate trends to aid in predicting material response to high flux exposures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.