Abstract

A thin coating of nickel on the surface of aluminum particles can prevent their agglomeration and at the same time facilitate their ignition, thus increasing the efficiency of aluminized propellants. In this work, ignition of single nickel-coated aluminum particles is investigated using an electrodynamic levitation setup (heating by laser) and a tube reactor (heating by high-temperature gas). The levitation experiments are used for measurements of the ignition delay time at different Ni contents in the particles. The high-temperature gas experiments are used to measure the critical ignition temperature. It is reported that the Ni coating dramatically decreases both the ignition delay time of laser-heated Al particles and the critical ignition temperature of gas-heated Al particles. A heat balance analysis of the levitated particles shows that the lower ignition temperature of Ni-coated Al particles is the most probable reason for the observed reduction in the ignition delay time. Exothermic intermetallic reactions between liquid Al and solid Ni are considered as the main reason for the lowered ignition temperature of Ni-coated Al particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.