Abstract

Abstract. Ignition of a liquid layer and dust fuel layer by a detonation wave propagating in hydrogen-oxygen and acetylene-oxygen mixtures is reported. Experiments were carried out using a shock tube equipped with optical-quality observation windows. A schlieren system and a high-speed camera were used for measurements of ignition delay. Pressure transducers provided data necessary for measurements of the detonation wave velocity and pressure variation within the front of the interacted detonation wave and fuel layer. Kerosene, nitroglycerin and PETN were used as fuels. Investigation shows that the layer of liquid fuel can be efficiently ignited by detonation wave. It was found that the ignition delay of the fuel layer depends mostly on the detonation wave velocity and sensitivity of igniting fuels, and slightly on the layer thickness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.