Abstract

The ignition of pelletized samples of hard coals of the long-flame gas (DG), gas (G), fat (L), coke (K) grades with particle sizes ≤63 μm by laser pulses (λ = 532 nm, τi = 10 ns) was studied. When the critical radiation energy density Hcr(1), specific for each grade of coal, is exceeded, an optical breakdown occurs and a dense plasma with a continuous emission spectrum is formed. As the plasma expands and rarefies, the spectra show the emission of carbon ions CII, excited nitrogen atoms N, excited carbon molecules C2, and carbon monoxide CO. The plasma glow intensity peaks at the end of the laser pulse, and the glow relaxation time is ~1 μs. The plasma glow amplitude increases nonlinearly with increasing laser pulse energy density. At radiation energy density H ≥ Hcr(2), specific for each grade of coal, thermochemical reactions are initiated in the volume of microparticles and coal particles are ignited in a submillisecond time interval.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.