Abstract

The influence of small additions (0.3-2 ppm) of iron or carbon nanoparticles on ignition delay times in stoichiometric mixture of 20% (methane + oxygen) diluted in argon was investigated. The experiments were performed in 50 mm diameter shock tube behind reflected shock waves. The nanoparticles were synthesized in pyrolysis of 0.5-1% Fe(CO)5 and 1-2% of C6H6 diluted in argon in the experiment before the ignition test. The residual nanoparticles were pulled into the flow behind incident and reflected shock wave from the shock tube walls and their volume fraction was measured by laser light extinction at the wavelength 633 nm. Additions of 0.3-2 ppm of iron nanoparticles to stoichiometric methane-oxygen mixture resulted in twofold decrease of ignition delays at temperatures below 1400 K relatively to calculated and experimental data for the mixture without nanoparticle addition. At additions of 0.4-1 ppm of carbon nanoparticles to stoichiometric methane-oxygen mixture a weak decrease of ignition delay relatively to the calculated data for the mixture without additives of carbon nanoparticles was observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.