Abstract
Applications of natural gas and hydrogen co-firing have received increased attention in the gas turbine market, which aims at higher flexibility due to concerns over the availability of fuels. While much work has been done in the development of a fuels database and corresponding chemical kinetics mechanism for natural gas mixtures, there are nonetheless few if any data for mixtures with high levels of hydrogen at conditions of interest to gas turbines. The focus of the present paper is on gas turbine engines with primary and secondary reaction zones as represented in the Alstom and Rolls Royce product portfolio. The present effort includes a parametric study, a gas turbine model study, and turbulent flame speed predictions. Using a highly optimized chemical kinetics mechanism, ignition delay times and laminar burning velocities were calculated for fuels from pure methane to pure hydrogen and with natural gas/hydrogen mixtures. A wide range of engine-relevant conditions were studied: pressures from 1 to 30 atm, flame temperatures from 1600 to 2200 K, primary combustor inlet temperature from 300 to 900 K, and secondary combustor inlet temperatures from 900 to 1400 K. Hydrogen addition was found to increase the reactivity of hydrocarbon fuels at all conditions by increasing the laminar flame speed and decreasing the ignition delay time. Predictions of turbulent flame speeds from the laminar flame speeds show that hydrogen addition affects the reactivity more when turbulence is considered. This combined effort of industrial and university partners brings together the know-how of applied as well as experimental and theoretical disciplines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.