Abstract

The influence of pressure, velocity, turbulence intensity, turbulence scale and mixture composition on minimum ignition energy and quenching distance in flowing gaseous mixtures is examined experimentally for methane and propane fuels. In some experiments, the nitrogen in the air is replaced by various inert gases such as carbon dioxide, helium or argon, while in others the nitrogen is either partly or totally replaced by oxygen. The tests are conducted at room temperature in a 9 cm square working section through which the combustible mixture is arranged to flow at various levels of pressure, turbulence and velocity. At each test condition, the spark energy required to ignite the flowing mixture is measured for several gap widths in order to establish the optimum gap width corresponding to minimum ignition energy. From analysis of the relevant combustion and heat transfer processes involved, expressions for the prediction of quenching distance in flowing mixtures are derived. Support for the model employed in this analysis is demonstrated by a close level of agreement between theoretical predictions of quenching distance and corresponding values calculated from the experimental data on minimum ignition energy obtained over a wide range of mixture compositions and flow conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.