Abstract
Steel-like density HfZrTiTa0.2Al0.8 high entropy alloy (HEA) with a density of 7.78 g/cm3 is designed and fabricated as a novel energetic structural material (ESM). The microstructure, thermal analysis, compressive mechanical properties, ignition and energy release under dynamic loading are systemically investigated. The experimental results show that the HfZrTiTa0.2Al0.8 HEA has a single BCC solid solution structure, and spinodal decomposition with elements segregation in the nanoscale is observed. Thermal analysis shows the HEA keeps stable in the Ar atmosphere and the oxidizing reaction occurs in the Air atmosphere. The mechanical properties show brittle characteristics with maximum strength with 1520 MPa and fracture strain 0.07 and strain rate effect from 0.001s−1 to 3000s−1 is observed. Under high strain rate loading, the fracture-induced spark is observed, which is caused by an oxidizing reaction due to the rise. By direct ballistic test, the energy release velocity threshold is measured as 980 m/s, and the energy release intensity is more violent in higher velocity impact conditions. Moreover, the impact reaction degree is increased with increasing fragmentation degree and adiabatic temperature rise induced by impact. The designed HEA-ESM is a promising candidate that simultaneously possesses both high strength, high reactive heat and excellent energetic characteristics in the application field of high-strength ESM fragment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.