Abstract

Results of experimental investigations of a multi-injector combustion chamber in the attached pipeline regime are presented. An IT-302M hotshot wind tunnel based at the Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences is used as a source of a high-enthalpy gas (air). The tests are performed at Mach numbers of 3, 4, and 5 in the ranges of the total temperature from 2000 to 3000 K and static pressure from 0.08 to 0.23 MPa. The block of injectors is made in two variants: with different relative lengths of wedge-shaped injectors (cocurrent injection of hydrogen). The influence of the conditions at the combustor entrance on ignition and stable combustion of hydrogen is studied. Intense combustion of hydrogen is obtained only at Mach numbers of 3 and 4. The mechanism of the “two-stage” evolution of fuel combustion in the combustor is analyzed. The experimental data are analyzed and compared with numerical predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.