Abstract
Stable ternary powders of Al·B·I2 and Mg·B·I2 composites of interest for agent defeat applications were prepared by mechanical milling. All powders contained 20wt.% of iodine. Powder ignition was characterized using a heated filament experiment. Ignition kinetics was compared to the kinetics of events occurring upon slow heating of these materials in thermo-analytical experiments. Individual particle combustion was studied by seeding the powder into a premixed hydrocarbon–air flame. Both particle burn times and temperatures were measured optically. Aerosol combustion of the powders was tested in a constant volume explosion chamber. Ignition temperatures for the Mg·B·I2 composites were lower than those for the Al·B·I2 composites. Iodine release occurring due to the formation of AlB2 and MgB2 was a likely ignition trigger for Al·B·I2 and Mg·B·I2 composites, respectively. The burn times of these composites were longer than those for pure Al and Mg powders. Burn times for Mg·B·I2 particles were shorter than for the same size particles of Al·B·I2. Combustion temperatures of the composite powders were lower than those of pure Al and Mg. In aerosol combustion, the rate of pressurization and maximum pressure were inversely proportional to the concentration of boron. The combustion efficiency was expressed through a ratio of the experimental maximum pressure to that predicted by a thermodynamic equilibrium calculation. This efficiency was the same for Al and Al·B·I2 composites. The efficiency for Mg·B·I2 composites exceeded that of pure Mg.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.