Abstract

BackgroundMalaria in Peru is concentrated in the Amazon region, especially in Loreto, and transmission is focused in rural and peri-urban communities. The government has approved a malaria elimination plan with a community approach and seeks to reduce the risk of transmission through preventive interventions, but asymptomatic and low-parasite-density infections are challenges for disease control and elimination. IgG antibodies play a critical role in combating infection through their ability to reduce parasitaemia and clinical symptoms. In particular, IgG subclasses have important roles in controlling malaria disease and may provide new insight into the development of malaria control strategies and understanding of malaria transmission. Through the use of excreted-secreted antigens from Plasmodium falciparum, were evaluated the responses of the four IgG subclasses in symptomatic and asymptomatic malarial infections.ResultsHigher levels of whole IgG were observed in asymptomatic carriers (P < 0.05). IgG3 and IgG1 were the most prevalent subclasses and did not show differences in their antibody levels in either type of carrier. All symptomatic carriers were positive for IgG4, and the presence of IgG3 and IgG2 were correlated with protection against parasitaemia. IgG2 showed lower prevalence and antibody titers in comparison to other subclasses.ConclusionsThis is the first study that characterizes the IgG subclass response in the Peruvian Amazon, and these results show that even in populations from regions with low malaria transmission, a certain degree of naturally acquired immunity can develop when the right antibody subclasses are produced. This provides important insight into the potential mechanisms regulating protective immunity.

Highlights

  • Malaria in Peru is concentrated in the Amazon region, especially in Loreto, and transmission is focused in rural and peri-urban communities

  • Cytophilic subclasses of immunoglobulin G (IgG) (IgG1 and IgG3) have been considered the most important antibodies in the development of immunity to malaria, as these subclasses are capable of mediating the activation of leukocytes via their binding to Fc-gamma receptor 2 (FcγRI) and FcγRIII

  • The development of immunity to malaria depends on the balance between cytophilic (IgG1 and IgG3) and non-cytophilic IgG antibodies (IgG4), which interfere with the binding of Fcγ receptors with cytophilic antibodies, complicating the immune response [5, 19, 20]

Read more

Summary

Introduction

Malaria in Peru is concentrated in the Amazon region, especially in Loreto, and transmission is focused in rural and peri-urban communities. The government has approved a malaria elimination plan with a community approach and seeks to reduce the risk of transmission through preventive interventions, but asymptomatic and low-parasite-density infections are challenges for disease control and elimination. IgG antibodies play a critical role in combating infection through their ability to reduce parasitaemia and clinical symptoms. Humoral immunity and IgG antibodies play a critical role in combating infection through their ability to reduce parasitaemia and clinical symptoms [3,4,5,6,7,8,9,10,11]. Cytophilic subclasses of IgG (IgG1 and IgG3) have been considered the most important antibodies in the development of immunity to malaria, as these subclasses are capable of mediating the activation of leukocytes via their binding to FcγRI and FcγRIII. In the presence of the H131 variant in the FcgRIIA receptor, IgG2 has a cytophilic role, whereas the R131 variant does not bind IgG2 [21,22,23]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call