Abstract

BackgroundThere is emerging evidence of a network of natural autoantibodies against GPCR which is dysregulated in various diseases. β2 adrenergic and M3 and M4 cholinergic receptor (β2 AdR and M3/4 mAChR) antibodies were found to be elevated in a subset of ME/CFS patients. MethodsWe comparatively analyzed the effects of polyclonal IgG on β2 AdR signaling and immune cell function in vitro. 16 IgG fractions were isolated from serum of 5 ME/CFS patients with elevated (CFS AABhigh) and 5 with normal levels (CFS AABnorm) of β2 AdR autoantibodies, and from 6 healthy controls (HC). The effect of each IgG on β-arrestin recruitment and cAMP production in β2 AdR and M3/4R reporter cell lines was studied. Further effect of each IgG on human monocyte cytokine production and on T cell proliferation in vitro was analyzed. In addition, studies on cytokine production in β2 AdR wild type and knockout mice splenocytes incubated with IgG fractions were performed. ResultsWe found that IgGs from HC could stimulate β-arrestin recruitment and cAMP production in β2 AdR reporter cell lines whereas IgGs from CFS AABhigh had no effect. The IgG-mediated activation of β2 AdR was confirmed in β2 AdR wt and ko mice. In accordance with previous studies IgG fractions from HC inhibited LPS-induced TNFα and stimulated LPS-induced IL-10 production of monocytes. Further IgG fractions from HC enhanced proliferation of T-cells stimulated with anti-CD3/CD28. IgG fractions from CFS AABhigh patients had no significant effect on both cytokine production and T cell proliferation, while IgGs from CFS AABnorm had an intermediate effect. We could also observe that IgG can modulate the signaling of β2 AdR ligands isoprenline and propranolol. ConclusionsWe provide evidence that IgG can activate β2 AdR. The β2 AdR activation by IgG is attenuated in ME/CFS patients. A dysregulation of β2 AdR function could explain many symptoms of ME/CFS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.