Abstract

The peptide-based pan-coronavirus fusion inhibitor EK1 is in phase III clinical trials, and it has, thus far, shown good clinical application prospects against SARS-CoV-2 and its variants. To further improve its in vivo long-acting property, we herein developed an Fc-binding strategy by conjugating EK1 with human immunoglobulin G Fc-binding peptide (IBP), which can exploit the long half-life advantage of IgG in vivo. The newly engineered peptide IBP-EK1 showed potent and broad-spectrum inhibitory activity against SARS-CoV-2 and its variants, including various Omicron sublineages and other human coronaviruses (HCoVs) with low cytotoxicity. In mouse models, IBP-EK1 possessed potent prophylactic and therapeutic efficacy against lethal HCoV-OC43 challenge, and it showed good safety profile and low immunogenicity. More importantly, IBP-EK1 exhibited a significantly extended in vivo half-life in rhesus monkeys of up to 37.7 h, which is about 20-fold longer than that reported for EK1. Strikingly, IBP-EK1 displayed strong in vitro or ex vivo synergistic anti-HCoV effect when combined with monoclonal neutralizing antibodies, including REGN10933 or S309, suggesting that IBP-conjugated EK1 can be further developed as a long-acting, broad-spectrum anti-HCoV agent, either alone or in combination with neutralizing antibodies, to combat the current COVID-19 pandemic or future outbreaks caused by emerging and re-emerging highly pathogenic HCoVs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call