Abstract
Experimental determination and modeling of IgG binding on a new protein A adsorbent based on a macroporous resin were performed. The new adsorbent consists of polymeric beads based on hydrophilic acrylamido and vinyl monomers with a pore structure optimized to allow favorable interactions of IgG with recombinant protein A coupled to the resin. The particles have average diameter of 57 μm and a narrow particle size distribution. The IgG adsorption equilibrium capacity is 46 mg/cm 3 and the effective pore diffusivity determined from pulse response experiments for non-binding conditions is 8.0 × 10 −8 cm 2/s. The IgG adsorption kinetics can be described with the same effective diffusivity by taking into account a heterogeneous binding mechanism with fast binding sites, for which adsorption is completely diffusion controlled, and slow binding sites for which adsorption is controlled by the binding kinetics. As a result of this mechanism, the breakthrough curve exhibits a tailing behavior, which appears to be associated with the slow binding sites. A detailed rate model taking into account intraparticle diffusion and binding kinetics is developed and is found capable of predicting both batch adsorption and breakthrough behavior over an ample range of experimental conditions. The corresponding effective diffusivity is independent of protein concentration in solution over the range 0.2–2 mg/cm 3 and of protein binding as a result of the large pore size of the support matrix. Overall, the small particle size and low diffusional hindrance allow capture of IgG with short residence times while attaining substantial dynamic binding capacities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.