Abstract

Objective: To investigate the role of the insulin-like growth factors (IGF) system during the differentiation of human pulp-derived fibroblasts (HPF). Methods: Primary HPF were cultured for 24 days in DMEM medium with IGF-I or IGF-II (50 ng/ml each). Cell growth and morphology, alkaline phosphatase (ALP) activity, the concentration of free deoxypyridinoline (DPD), IGF-I, -II, IGFBP-2 and -3 were studied. The number of <sup>125</sup>I-IGF-I binding sites was estimated by Scatchard analysis. Results: Light-microscopically visible nodules emerged during differentiation. Simultaneously, the ALP activity increased steadily between days 8 and 24, while the DPD concentration decreased by about 50%. The HPF produced high concentrations of IGF-II (2.00–1.30 µg/10<sup>6</sup> cells) but low IGF-I, IGFBP-2. IGFBP-2 was not changed, IGFBP-3 increased by 65% during differentiation. The number of IGF binding sites increased from 8,500 ± 55 per cell (day 8) up to 22,000 ± 570 (day 24). Conclusion: The increasing number of IGF-binding sites accompanied by alterations in the biochemical bone markers during the differentiation of HPF suggests an autocrine/paracrine role for the IGFs in the formation of dentinal hard tissue.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.