Abstract

Mammary gland growth and involution are based on a dynamic equilibrium between proliferation and apoptosis of mammary epithelial cells (MEC). The main type of cell death responsible for bovine mammary gland involution is apoptosis, but MEC also exhibit morphological features of autophagy. The present study has been undertaken in order to examine factors, which are responsible for the regulation of autophagy in bovine MEC. We used a model of in vitro mammary gland involution known to be dependent on fetal bovine serum (FBS) deficiency in the culture of bovine BME-UV1 cells. We investigated the effects of insulin-like growth factor-1 (IGF-I) and epidermal growth factor (EGF) signaling, as well as sex steroids and rapamycin (a specific inhibitor of mammalian target of rapamycin, mTOR, kinase) on autophagy in the MEC line BME-UV1. Our main focus was on the role of mTOR in the regulation of autophagy by growth factors and hormones. Laser scanning cytometry, electron microscopy, Western-blot analysis, GFP-LC3 reporter-based expression analysis, and LysoTracker Green-related fluorescence were used to determine the activity of autophagy in BME-UV1 cells. We found that FBS deficiency induced both autophagy and apoptosis with the highest intensity of both processes after 48 h of MEC exposure to the deficient medium (0.5% FBS). Addition of IGF-I or/and EGF to the FBS-deficient medium clearly diminished autophagy. We also show that IGF-I and EGF are involved in the activation of mTOR in bovine MEC, whereas inhibition of mTOR by rapamycin abrogated the suppressive effects of IGF-I and EGF on autophagy. This suggests that mTOR links IGF-I and EGF signaling in inhibiting the autophagy pathways. Contrary to IGF-I and EGF, 17 β-estradiol and progesterone exerted stimulatory effects on autophagy in bovine MEC. At the same time we observed a suppressive effect of both steroids on mTOR activation/phosphorylation. In conclusion, autophagy in bovine MEC undergoes complex regulation, where its activity is controlled by survival pathways dependent on IGF-I and EGF, which are involved in suppression of autophagy, and by pregnancy steroids, which act as inducers of the process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call