Abstract

Cardiac fibrosis remains an unresolved problem in heart disease. Its etiology is directly caused by the activation and proliferation of cardiac fibroblasts (CFs). However, there is limited information regarding the biological role of cardiac fibroblasts in cardiac fibrosis. Herein, we screened out a gene, IGFBP3, whose expression significantly increased in TGF-β1-stimulated human primary CFs by mining RNA-Seq data for differential and WGCNA. We verified the IGFBP3's expression in transverse aortic constriction (TAC) surgery, isoproterenol (ISO)-induced cardiac fibrosis models, and TGFβ1-stimulated mouse primary CFs. We also found that the knockdown of IGFBP3 could inhibit the migration and proliferation ability of CFs. Furthermore, we found that aberrant N6-methyladenosine(m6A) mRNA modifications in the animal model and activated CFs may regulate the expression of IGFBP3 in developing cardiac fibrosis. Silencing METTL3 could downregulate the expression of IGFBP3 and inhibit the activation of CFs and the degree of cardiac fibrosis both in vitro and in vivo. Indeed, we also verified the expression of METTL3 and IGFBP3 in the atrial tissues of patients with atrial fibrillation (AF). Thus, METTL3 may regulate IGFBP3's expression and CFs activation via RNA epigenetic modifications, laying the foundation for a specific and novel therapeutic target in cardiac fibrosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call