Abstract

The major function of Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) is to regulate cell metabolism. However, emerging evidence indicates that IGF2BP2 plays a role in cancer, but the underlying mechanism is largely unknown. Here we showed that upregulation of IGF2BP2 is associated with poor outcomes of pancreatic cancer patients and suppression of IGF2BP2 inhibits cell proliferation. We further showed that IGF2BP2 regulates lncRNA DANCR. Ectopic expression IGF2BP2 enhances, whereas knockdown (KD) or knockout (KO) of IGF2BP2 suppresses DANCR expression. Moreover, in vivo RNA precipitation and reciprocal RNA immunoprecipitation revealed that IGF2BP2 interacts with DANCR. DANCR promotes cell proliferation and stemness-like properties. Experiments with xenograft models revealed that while ectopic expression of DANCR promotes, DANCR KO suppresses tumor growth. Mechanistically, DANCR is modified at N6-methyladenosine (m6A) and mutagenesis assay identified that adenosine at 664 of DANCR is critical to the interaction between IGF2BP2 and DANCR where IGF2BP2 serves a reader for m6A modified DANCR and stabilizes DANCR RNA. Together, these results suggest that DANCR is a novel target for IGF2BP2 through m6A modification, and IGF2BP2 and DANCR work together to promote cancer stemness-like properties and pancreatic cancer pathogenesis.

Highlights

  • Insulin-like growth factor 2 (IGF2) mRNA-binding protein 2 (IGF2BP2) is an RNA-binding protein (RBP) and serves as a posttranscriptional regulatory factor for mRNA localization, stability, and translational control

  • Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) is implicated in regulation of mRNA localization and mRNA stability, impacting cell proliferation, invasion, epithelial-mesenchymal transition and cancer stem cells (CSCs) maintenance

  • As a RBP, IGF2BP2 interacts with large numbers of RNAs

Read more

Summary

Introduction

Insulin-like growth factor 2 (IGF2) mRNA-binding protein 2 (IGF2BP2) is an RNA-binding protein (RBP) and serves as a posttranscriptional regulatory factor for mRNA localization, stability, and translational control. Dysregulation of IGF2BP2 is often associated with human diseases such as insulin resistance, diabetes, or cancer [1]. Our previous study showed that IGF2BP2 regulates colorectal cancer cell proliferation through suppressing the miR-195-mediated RAF-1 degradation [2]. IGF2BP2 has been implicated in maintaining glioblastoma stem cell (GSC) properties through regulating let-7-mediated gene silencing [3]. Experiments with IGF2BP2 knockout (KO) mice demonstrated that IGF2BP2 is a tumor promoter that drives cancer progression [4]. IGF2BP family proteins, including IGF2BP2, have been shown to be required for their recognition of N6-methyladenosine (m6A) RNA modifications and are critical for their oncogenic functions [5]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call