Abstract

Insulin-like growth factor 2 (IGF2) enhances proliferation and survival of human first-trimester cytotrophoblasts (CTB) by signaling through the insulin-like growth factor 1 receptor (IGF1R). However, the role of the IGF2 receptor (IGF2R) in regulating trophoblast kinetics is unclear: It could act as a clearance receptor for trafficking excess ligand to lysosomes for degradation and/or directly mediate IGF2 signaling. We used an IGF2R knockdown strategy in BeWo cells and placental villous explants to investigate trophoblast proliferation and survival in response to stimulation by IGF. Both IGF1 and IGF2 significantly (P < 0.001) increased mitosis and reduced apoptosis in serum-starved BeWo cells. Small interfering RNA (siRNA)-mediated knockdown of IGF2R further enhanced IGF2-stimulated mitosis (P < 0.01), and IGF2-mediated rescue of apoptosis (P < 0.001) in these cells. Leu(27)IGF2, an IGF2 analogue that binds to IGF2R but not IGF1R, also protected IGF2R-expressing BeWo cells from apoptosis but did not increase mitosis. IGF treatment of term placental villous explants with reduced syncytial expression of IGF2R increased CTB proliferation (P < 0.001) and decreased apoptosis (P < 0.01) compared to untreated controls. Moreover, IGF2-mediated rescue of CTB apoptosis was significantly greater than that in tissue with normal IGF2R expression. Leu(27)IGF2 promoted mitogenesis and survival only in explants with intact IGF2R expression. Given that altered CTB turnover is observed in pregnancies complicated by fetal growth restriction, the development of strategies to manipulate the IGF2R signaling axis in the syncytiotrophoblast may provide a therapeutic avenue for treating this condition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.