Abstract

IGF-1 plays a key role in the proliferation and differentiation of granulosa cells. However, the molecular mechanism of IGF-1 action in avian granulosa cells during follicle maturation is unclear. Here, we first studied IGF-1 receptor (IGF-1R) expression, IGF-1-induced progesterone production and some IGF-1R signaling pathways in granulosa cells from different follicles. IGF-1R (mRNA and protein) was higher in fresh or cultured granulosa cells from the largest follicles (F1 or F2) than in those from smaller follicles (F3 or F4). In vitro, IGF-1 treatment (10 −8 M, 36 h) increased progesterone secretion by four-fold in mixed F3 and F4 (F3/4) granulosa cells and by 1.5-fold in F1 granulosa cells. IGF-1 (10 −8 M, 30 min)-induced increases in tyrosine phosphorylation of IGF-1R beta subunit and phosphorylation of ERK were higher in F1 than in F3/4 granulosa cells. Interestingly, IGF-1 stimulation (10 −8 M, 10 min) decreased the level of AMPK Thr172 phosphorylation in F1 and F3/4 granulosa cells. We have recently showed that AMPK (AMP-activated protein kinase) is a protein kinase involved in the steroidogenesis in chicken granulosa cells. We then studied the effects of AMPK activation by AICAR (5-aminoimidazole-4-carboxamide ribonucleoside), an activator of AMPK, on IGF-1-induced progesterone secretion by F3/4 and F1 granulosa cells. AICAR treatment (1 mM, 36 h) increased IGF-1-induced progesterone secretion, StAR protein levels and decreased ERK phosphorylation in F1 granulosa cells. Opposite data were observed in F3/4 granulosa cells. Adenovirus-mediated expression of dominant negative AMPK totally reversed the effects of AICAR on IGF-1-induced progesterone secretion, StAR protein production and ERK phosphorylation in both F3/4 and F1 granulosa cells. Thus, a variation of energy metabolism through AMPK activation could modulate differently IGF-1-induced progesterone production in F1 and F3/4 granulosa cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.