Abstract
PurposeWe have previously demonstrated a hyperplastic phenotype when Rb expression was disrupted within the intestinal epithelium. These findings mimic resection-induced adaptation suggesting a possible mechanistic role for Rb during adaptation. The purpose of the present study was to elucidate a mechanism for how Rb deficiency induces intestinal hyperplasia. MethodsEnterocytes isolated from intestine-specific Rb knockout mice (Rb-IKO) underwent a microarray to elucidate their gene expression profile. IGF2 expression was significantly elevated, which was subsequently confirmed by RT-PCR and in situ mRNA hybridization. Mice with deficient expression of IGF2 or its receptor IGF1R were therefore crossed with Rb-IKO mice to determine the significance of IGF2 in mediating the Rb-IKO intestinal phenotype. ResultsExpression of IGF2 was significantly elevated in villus enterocytes of Rb-IKO mice. The mucosal hyperplasia in Rb-IKO mice was reversed when either IGF2 or IGF1R expression was genetically disrupted in Rb-IKO mice. ConclusionIGF-2 expression is significantly elevated in villus enterocytes and is required for the hyperplastic intestinal mucosal phenotype of Rb-IKO mice. The trophic effects of IGF2 require intact IGF1R signaling within the intestinal epithelium. These findings reveal novel regulatory roles for Rb in expanding intestinal mucosal surface area.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.