Abstract

Insulin-like growth factor-1 (IGF-1), in addition to its classic effects on cell proliferation and organism growth, has pleiotropic actions on the immune system, particularly on the thymus. Thus, the objective of this study was to evaluate the influence of IGF-1 on molecules involved in the survival of thymocytes in vitro using a co-culture system with thymic stromal cells obtained from C57BL/6 mice. The obtained thymic stroma has contained thymic epithelial cells, macrophages, dendritic cells, fibroblasts, and preserved the expression of the major histocompatibility complex (MHC) molecules. Fresh thymocytes were added to these cultures and the co-culture were treated daily with IGF-1 (100ng/mL) for 3days. In this scheme, the viability of the thymocytes was about 70%, either in the control (non-treated cells) or in the IGF-1-treated cultures. It was found that IGF-1 was able to increase the percentage of thymocytes from the CD4+ single-positive (SP) subset. This result was accompanied by an increase in the MHC II expression on thymic stromal cells and an augment on the interleukin-7 receptor (CD127) on the surface of the CD4 SP thymocytes after treatment with IGF-1. Finally, IGF-1 treatment increased the expression of the ThPOK encoding gene Zbtb7b, which is involved in the differentiation of CD4+ SP thymocytes. Our study demonstrates the participation of IGF-1 in the thymocyte/thymic stroma interactions, especially in the extended survival of the CD4+ lineage in the thymus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call