Abstract

Immunoglobulin E (IgE)-mediated hypersensitivity against environmental allergens, commonly including Dermatophagoides farinae, is associated with atopic diseases in both humans and dogs. We have recently identified a family of clinically healthy West Highland white terriers (WHWTs) with high-serum D. farinae-IgE levels. In this study, we investigated the genetic mechanism controlling IgE responsiveness in dogs by performing a genome-wide association study (GWAS) using the Affymetrix V2 Dog SNP array in 31 high-IgE and 24 low-IgE responder WHWTs. A gene-dropping simulation method, using SIB-PAIR software, showed significant allelic association between serum D. farinae-specific IgE levels and a 2.3-Mb area on CFA35 (best empirical P = 1 × 10(-5)). A nearby candidate gene, CD83, encodes a protein which has important immunological functions in antigen presentation and regulation of humoral immune responses. We sequenced this gene in 2 high-IgE responders and 2 low-IgE responders and identified an intronic polymorphic repeat sequence with a predicted functional effect, but the association was insufficient to explain the GWAS association signal in this population (P = 1 × 10(-3)). Further studies are necessary to investigate the significance of these findings for IgE responsiveness and atopic disease in the dog.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call