Abstract

We show in this study that the ability of five different monomeric IgEs to enhance murine bone marrow-derived mast cell (BMMC) survival correlates with their ability to stimulate extracellular calcium (Ca(2+)) entry. However, whereas IgE+Ag more potently stimulates Ca(2+) entry, it does not enhance survival under our conditions. Exploring this further, we found that whereas all five monomeric IgEs stimulate a less robust Ca(2+) entry than IgE+Ag initially, they all trigger a more prolonged Ca(2+) influx, generation of reactive oxygen species (ROS), and ERK phosphorylation. These prolonged signaling events correlate with their survival-enhancing ability and positively feedback on each other to generate the prosurvival cytokine, IL-3. Interestingly, the prolonged ERK phosphorylation induced by IgE appears to be regulated by a MAPK phosphatase rather than MEK. IgE-induced ROS generation, unlike that triggered by IgE+Ag, is not mediated by 5-lipoxygenase. Moreover, ROS inhibitors, which block both IgE-induced ROS production and Ca(2+) influx, convert the prolonged ERK phosphorylation induced by IgE into the abbreviated phosphorylation pattern observed with IgE+Ag and prevent IL-3 generation. In support of the essential role that IgE-induced ROS plays in IgE-enhanced BMMC survival, we found the addition of H(2)O(2) to IgE+Ag-stimulated BMMCs leads to IL-3 secretion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.