Abstract
Immunoglobulin E (IgE) is pivotal for manifestation and persistence of most immediate-type allergies and some asthma phenotypes. Consequently, IgE represents a crucial target for both, diagnostic purposes as well as therapeutic approaches. In fact, allergen-specific immunotherapy – aiming to re-route an IgE-based inflammatory response into an innocuous immune reaction against the allergen – is the only curative approach for IgE-mediated allergic diseases known so far. However, this requires the cognate allergen to be known. Unfortunately, even in well-characterized allergics or asthmatics, often just a small fraction of total IgE can be assigned to specific target allergens. To overcome this knowledge gap, we have devised an analytical platform for unbiased IgE target epitope detection. The system relies on chemically produced random peptide libraries immobilized on polystyrene beads (“one-bead-one-compound (OBOC) libraries”) capable to present millions of different peptide motifs simultaneously to immunoglobulins from biological samples. Beads binding IgE are highlighted with a fluorophore-labeled anti-IgE antibody allowing fluorescence-based detection and isolation of positives, which then can be characterized by peptide sequencing. Setting-up this platform required an elaborate optimization process including proper choice of background suppressants, secondary antibody and fluorophore label as well as incubation conditions. For optimal performance our procedure involves a sophisticated pre-adsorption step to eliminate beads that react nonspecifically with anti-IgE secondary antibodies. This step turned out to be important for minimizing detection of “false positive” motifs that otherwise would erroneously be classified as IgE epitopes. In validation studies we were able to retrieve artificial test-peptide beads spiked into our library by using IgE directed against those test-peptides at physiological concentrations (≤20 IU/ml of specific IgE), and disease-relevant bead-bound epitopes of the major peanut allergen Ara h 2 by screening with sera from peanut allergics. Thus, we established a platform with which one can find and validate new immunoglobulin targets using patient material which displays a largely unknown immunoglobulin repertoire.
Highlights
Recognizing foreign matter that has entered the body is a key feature of humoral adaptive immunity
A considerable number of asthmatics display high total serum immunoglobulin E (IgE) levels along with the respective airway pathology but do not react with the typical aeroallergens they are tested for. Some disorders such as parasite infections or hyper-IgE-syndrome promote the formation of IgE, and atopic predisposition may support class-switch of natural antibodies to class E, it is unlikely that those afflictions account for the high total serum IgE levels that are often associated with asthmatic airway pathology
High affinity seems to be necessary for the pathology that accompanies high IgE levels in allergy and asthma [42]
Summary
Recognizing foreign matter that has entered the body is a key feature of humoral adaptive immunity. A substantial number of asthmatics, for instance, display high total serum immunoglobulin E (IgE) levels but do not react with the common allergens the patients usually are tested for in commercially available routine allergy diagnostic tests [1,2,3] In the past, those patients were assigned to suffer from “nonallergic asthma” (intrinsic asthma) [4] but recent evidence suggests that those individuals are underdiagnosed in terms of allergen reactivity. Molecular allergology offers further improvements to diagnostics, pinpointing sensitizations to individual allergen components on the molecular level and providing the basis for refined allergy classifications, risk predictions and personalized treatment regimens [14, 15] All these diagnostic procedures require the knowledge of at least the primary allergen source. It often remains an enigma against which allergens the IgE-high-asthmatics are sensitized or whether all relevant allergens have been identified as yet
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.