Abstract
The emergence of applications which require high-voltage switches has created a tendency to use semiconductor device series stacks. These series stacks permit operation at blocking voltages above semiconductor elements’ nominal voltage. Insulated-gate bipolar transistors (IGBT) are currently utilized for controllability and switching speed, when these topologies are employed. The main challenge therewith is guaranteeing voltage balance between IGBTs, both when blocked and when switching transistors. Most of the methods which have been proposed to mitigate static and dynamic voltage unbalances increase transistor losses. The series stack loss-less high voltage switch (LHVS) which mitigates voltage unbalances, thus reducing switching losses, is presented in this paper. LHVS consists of a circuit, which ensures soft IGBT switching, an energy recovery circuit, and a gate delay compensation circuit. Additionally, the insulation voltage level is guaranteed to be equal between control circuit and high-voltage side of each IGBT. The operating principle of the LHVS is detailed in this paper, as is experimental validation which has been performed for three series stack modules. Static unbalances are reduced to 1%, while the differences between collector–emitter voltage curves in switching “ on ” do not surpass 8 ns, and switching losses are reduced by 41%, as compared to the hard-switching topology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.